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The Bagger-Lambert-Gustavsson (BLG) model [1 – 4] is a maximally (N = 8) super-

symmetric and conformal interacting 3-dimensional model, whose local degrees of freedom

consist of scalar multiplets. It has been proposed to be related to AdS4 boundary theories

describing multiple membrane configurations, although the interpretation is unclear, partly

due to the fact that there only is one unique finite-dimensional representation for the fields

(an so(4) gauge algebra with matter in the vector representation) [5, 6] that limits its use

to two-membranes stacks [7, 8]. The discovery of the BLG model has been followed by an

intense activity concerning its interpretation and possible modifications (either with de-

generate or indefinite metric for the scalars or with less supersymmetry), possibly relevant

for the formulation of multiple membrane theory The literature in these directions of the

subject is large, and we refer to e.g. ref. [9] for a selection of references.

It is of course desirable to formulate a model with as much manifest symmetry as

possible. Being a maximally supersymmetric theory, the BLG model has on-shell super-

symmetry, and no finite set of auxiliary fields. An appropriate treatment of such models

— the standard example being D = 10 super-Yang-Mills — is to use pure spinors. This is

the approach that will be taken in this letter. We will in fact investigate the most general

form of the interactions, under very mild assumptions. As expected, we recover the con-

dition consisting of the existence of a 3-algebra and its structure, although this derivation

becomes much easier when supersymmetry is kept manifest. It was realised early that

pure spinor techniques are relevant for supersymmetric theories and supergravity [10 – 12].

The principles behind and applications of pure spinors for maximally supersymmetric field

theories may be found in e.g. refs. [13 – 17].

The first thing to decide is what the pure spinors are, and to find the correct represen-

tations of the wave functions. The spinorial coordinates are θAα, where A = 1, 2 is a spinor

index under the 3-dimensional Lorentz group Spin(1, 2) ≈ SL(2, R) and α = 1, . . . , 8 is a

chiral spinor 8s under the R-symmetry group Spin(8). We denote the 3-dimensional vector

indices a, b, . . .. The superspace torsion is T c
Aα,Bβ = γc

ABδαβ . A pure spinor BRST operator

is generically formed as Q = λAαDAα, and the purpose of the pure spinor constraint is to

make Q nilpotent by projecting out the torsion in Q2. We see that the appropriate pure

spinor constraint is

(λ(AλB)) = 0 . (1)

The notation for spinor contractions, denoted by parentheses, is throughout the paper that

Spin(8) indices are contracted, while SL(2) indices are kept explicit. Very similar pure

spinor constraints have been considered in ref. [18]. If we introduce Dynkin labels for

representations of sl(2) ⊕ so(8), θ, D and λ transform in 8s = (1)(0010). A bilinear in

λ contains the representations (0)(0100) ⊕ (2)(0000) ⊕ (2)(0020), and the second of these

(the 3-dimensional vector) is removed by the pure spinor constraint. The pure spinor is

a (first quantised) ghost, with ghost number 1. A pure spinor wave function is seen as

a power expansion in λ. In order to calculate cohomologies of Q we need a list of the

representations occurring at any power λn. Using the pure spinor constraint (1), one finds
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n = 0 n = 1 n = 2 n = 3 n = 4

dim = 0 (0)(0000)
1
2 • •

1 • (2)(0000) •
3
2 • • • •

2 • • (2)(0000) • •
5
2 • • • • •

3 • • • (0)(0000) •
7
2 • • • • •

4 • • • • •

Table 1: The cohomology of the scalar complex.

that these representations are

[n/2]⊕

i=0

(n − 2i)(0, i, n − 2i, 0) . (2)

This looks at first sight more complicated than the situation in e.g. D = 10, N = 1

pure spinor space [19], where one has one irreducible representation at each n. Irreducible

representations however occur in many other situations, like D = 11 supergravity [15, 20 –

22], and we will see that the end results, the cohomologies, are quite simple.

Let us first consider a scalar wave function. Its expansion in λ simply contains the

representations in eq. (2) of decreasing ghost number 1 − n. In order to find the represen-

tations of component fields (and field equations) one considers, as usual, the cohomology

of Q at zero modes of ∂a. This is a purely algebraic computation, that can be performed

by hand, but preferably by the computer-based method of ref. [15]. The result is given in

table 1.

The grading n is the degree of homogeneity in λ, and the vertical direction is the

expansion in the fermionic coordinates. The superfields at different n are shifted vertically

in the table so that Q acts horizontally. This cohomology describes a Chern-Simons field,

its ghost and the associated anti-fields. The fermionic scalar wave function Ψ has to be

assigned ghost number 1 and dimension 0 in order for the connection Aa to have ghost

number 0 and dimension 1. It is essential to note that the antifield A∗
a has dimension 2,

so that the equation of motion for A following from QΨ = 0 is first order in derivatives.

It reads dA = 0. There is no additional input to the pure spinor formalism that gives the

Chern-Simons dynamics (as opposed to e.g. Yang-Mills). The full non-linear Chern-Simons

theory follows from the non-linear modification of the cohomology:

QΨ +
1

2
[Ψ,Ψ] = 0 , (3)

where [·, ·] is the Lie bracket.

We also need to describe the matter multiplet. It contains scalars φI in the vector

representation (1,8v) = (0)(1000) of Spin(8) and spinors χAα̇ in the chiral representation
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n = 0 n = 1 n = 2 n = 3 n = 4

dim = 1
2 (0)(1000)

1 (1)(0001) •
3
2 • • •

2 • (1)(0001) • •
5
2 • (0)(1000) • • •

3 • • • • •
7
2 • • • • •

Table 2: The cohomology of the vector complex.

(2,8c) = (1)(0001). Since there is no gauge symmetry, we expect the scalar fields to sit at

the lowest order of λ in the wave function. We therefore try a bosonic wave function ΦI

of dimension 1/2 and ghost number 0 in (0)(1000). A pure spinor wave function in a non-

scalar representation of the structure group (such as supergravity complexes containing the

spinorial 1-form frame field, or some non-maximally supersymmetric models [23]) is always

subject to some further condition; the cohomology would otherwise just be the tensor

product of the wave function representation with the cohomology of a scalar wave function.

These extra conditions typically remove “smaller representations”, in the same spirit as the

pure spinor constraint itself. In the present case one may postulate an additional invariance

under

δ̺Φ
I = (λAσI̺A) (4)

for arbitrary functions ̺α̇
A. The effect of this further invariance (which should be imple-

mented the same way as the pure spinor constraint, in the sense that the wave function

belongs to an equivalence class modulo such functions) is that the expansion of ΦI at order

λn (i.e., ghost number −n) contains the representations

[n/2]⊕

i=0

(n − 2i)(1, i, n − 2i, 0) . (5)

Note the similarity to the representation content of the scalar case (2), the difference is only

the 1 in the vector position. This construction is vindicated by the observation that the

zero-mode cohomology is the correct one, given in table 2. We observe that the antifields

have the correct dimensions and representations. The equations of motion derived from

QΦI = 0 of course are �φI = 0, (γa∂aχ)Aα̇ = 0.

Before introducing interactions, we would like to discuss how to write an action. Con-

sider first the Chern-Simons multiplet. The cohomology contains a singlet at λ3θ3, the

position of the antighost. This cohomology can serve as a measure with ghost number

−3. Strictly speaking, this is not true with the minimal set of variables described here

(analogous to the single pure spinor in D = 10). Unless further variables are introduced,

this measure is degenerate, since an action constructed from it will not contain components

of fields at higher powers than λ3. Berkovits has shown how to add extra variables that

render the measure non-degenerate without changing the cohomology [24]. We will not go
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further into this procedure, but note that it is clear that the corresponding construction

works also in the present setting. Using a non-degenerate measure in non-minimal pure

spinor space, one may write a Lagrangian for the Chern-Simons multiplet:

LCS =
1

2
< Ψ, QΨ +

1

3
[Ψ,Ψ] > , (6)

where < ·, · > is a trace on the Lie algebra and [·, ·] the Lie bracket.

How does one write a (linearised) Lagrangian for the scalar multiplet? There are

two issues, that turn out to be solved simultaneously. The wave function ΦI is bosonic,

which excludes an expression like ΦIQΦI , rather one needs to contract the SO(8) vector

indices with some antisymmetric tensor. In addition, to get ghost number 3 (there is no

other scalar cohomology available), one needs an insertion of two powers of λ. The unique

possibility seems to be

Lfree scalar =
1

2
MIJΦIQΦJ , (7)

with MIJ = εAB(λAσIJλB). One now has to check that the equations of motion MIJQΦJ =

0 are equivalent to QΦI = 0. This happens to be true exactly thanks to the invariance (4).

Namely, any part of ΦI of the form (λAσI̺A) drops out of MIJΦJ due to the Fierz identity

εAB(λAσIJλB)(σJλC)ȧ = 0, which easily is shown to hold for pure spinors (but not general

ones). This shows that the form (7) of the scalar field Lagrangian is good, and gives yet

another reason for the choice of the content of the wave function implied by the equivalence

classes of eq. (4). The factor of λ2 in eq. (7), whose necessity we have already given a

number of arguments for, will turn out to be crucial in checking the consistency of the

interacting Lagrangian. This new mechanism, with insertions of λ’s in the action and the

corresponding consistent modding out of representations in the wave function, may turn

out to have applications in different settings, e.g. in the context of supergravity.

We now have a working supersymmetric description of the non-interacting fields (in the

Chern-Simons case self-interaction is included). The next step is to let the scalars transform

also under some representation R of the Lie algebra of Ψ. We introduce traces < ·, · >adj

for the adjoint and < ·, · >R for R, which has to be an orthogonal representation. The Lie

bracket is written [·, ·] and the action of an element T ∈ adj on x ∈ R is denoted T ·x. We

have the obvious relations < x, T ·y >R= − < T ·x, y >R and T ·(U ·x)−U ·(T ·x) = [T,U ]·x.

One term in the Lagrangian, apart from the ones already discussed, comes from the

“covariantisation” of QΦI to (Q + Ψ·)ΦI . We then have

L =< Ψ, QΨ +
1

3
[Ψ,Ψ] >adj +

1

2
MIJ < ΦI , QΦJ + Ψ · ΦJ >R . (8)

When trying to find other terms for an Ansatz with dimension 0 and ghost number 3, one

finds that the terms already present in eq. (8) exhaust the list of possible ones, as long as

no dimensionful constant is introduced and no explicit fermionic derivatives or derivatives

with respect to λ are allowed to enter (neither of these are wanted, unless we search for

higher derivative modifications). Essentially, counting of dimension demands one power of

λ for each Φ. Unless the number of Φ’s is even, one can not form a scalar. Ghost number

counting then limits the number of λ’s, and consequently of Φ’s, to zero or two. It turns
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out that the Lagrangian (8) is the full answer, but before making that claim we have to

examine its consistency.

All fields are obtained from cohomologies, i.e., free fields are solutions of “Q(field) = 0”

modulo gauge transformations “δ(field) = Q(gauge parameter)”. When interactions are

turned on, there still has to exist a gauge invariance of the form “δ(field) = Q(gauge

parameter) + (interaction terms)”. This applies also to the wave function for the scalars.

Consistency of the interactions is proven if one finds the invariance under such gauge

transformations. This should be equivalent to demanding that the action satisfies a Batalin-

Vilkovisky master equation (it would be interesting to find explicit generic expressions for

the anti-bracket in the pure spinor framework).

The gauge invariance corresponding to the Chern-Simons field is the simplest part. The

extra “connection term” in the minimal coupling of the matter multiplet was introduced

to ensure this invariance, and the action is indeed (almost manifestly) invariant under

δΛΨ = QΨ − [Λ,Ψ] , (9)

δΛΦI = −Λ · ΦI , (10)

up to a Q-exact term (a “total derivative”).

A general variation of the Lagrangian is

δL =< δΨ, QΨ +
1

2
[Ψ,Ψ] +

1

2
MIJ{Φ

I ,ΦJ} >adj +MIJ < δΦI , QΦJ + Ψ · ΦJ >R , (11)

where we have introduced the notation {·, ·} for the formation of an adjoint element from

the antisymmetric product of two elements in R via < x, T · y >R=< T, {x, y} >adj. The

gauge transformation corresponding to the matter wave function is

δΞΨ = −MIJ{Φ
I ,ΞJ} , (12)

δΞΦI = QΞI + Ψ · ΞI . (13)

Roughly speaking, the second of these equations is like a covariant derivative. When

applied to the covariantised matter kinetic term a field strength (Q + Ψ)2 arises, and this

is cancelled by the appropriate transformation of Ψ, whose Chern-Simons term varies to

the field strength. The only term not immediately cancelled comes from the variation of

Ψ in the matter kinetic term. It contains four powers of λ and is proportional to

MIJMKL < {ΦI ,ΦJ}, {ΦK ,ΞL} >adj . (14)

For general choices of the representation R and of < ·, · >adj this term will not vanish, and

there is no consistent interaction. The pure spinors give information on allowed structures.

The fourth power of a pure spinor contains the representations (0)(0200) ⊕ (2)(0120) ⊕

(4)(0040). This means that the product MIJMKL, being Spin(1, 2) scalar, is in (0)(0200),

and as a consequence M[IJMKL] = 0. If, and only if, the expression < {x, y}, {z,w} >adj

is completely antisymmetric in its arguments, the potentially problematic term given by

eq. (14) vanishes. It is then convenient to introduce the antisymmetric 3-bracket [[·, ·, ·]] via

[[a, b, c]] = {a, b} · c, or equivalently, < {x, a}, {b, c} >adj=< x, [[a, b, c]] >R.

– 5 –
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It is interesting to examine the (super-)algebra of gauge transformations. The com-

mutators [δΛ, δΛ′ ] and [δΛ, δΞ] are “covariant”. The remaining one, [δΞ, δΞ′ ], requires

calculation, which when acting on Ψ yields [δΞ, δΞ′ ]Ψ = δΛ(Ξ,Ξ′)Ψ, where Λ(Ξ,Ξ′) =

−MIJ{Ξ,Ξ′}. The structure is like a superalgebra, where the anticommutator of two

fermionic gauge transformations gives a bosonic one. Performing the same calculation on

ΦI gives [δΞ, δΞ′ ]ΦI = −2MJK [[Ξ[K,Ξ′I],ΦJ ]] = δΛ(Ξ,Ξ′)Φ
I − 3MJK [[Ξ[I ,Ξ′J ,ΦK]]]. The last

term is an equivalence transformation of the type (4). Any transformation δΦI = sIJKMJK

with antisymmetric sIJK is trivial, as seen by setting the parameter ̺ ∼ sIJKσIJKλ.

We have thus established that the existence of the 3-algebra is the possibility allowed

by the pure spinors for the modified (interacting) cohomology to exist. The 3-bracket of

course has to satisfy the fundamental identity, but it provides no further information, as

it follows from the structure already defined (more precisely, from the fact that the the

3-bracket of three elements in R itself transforms in R under a transformation with an

element in adj defined by two elements in R via the curly bracket). Once the structure of

the pure spinor wave functions is established, the calculation is considerably simpler than

in the component formalism — apart from a single term giving the information about the

need of an antisymmetric 3-bracket the symmetries are essentially covariantly realised. A

striking property of the Lagrangian is that it only contains terms quadratic and cubic in

fields, and that it, in strong contrast to the component action, essentially consists of a

Chern-Simons term and minimally coupled matter.

The component action contains a 6-point coupling of scalars and a coupling of two

scalars and two fermions, appropriate for a conformal model. The interactions between

component fields arise after elimination of auxiliary fields, much in the same way as the

D = 10 super-Yang-Mills dynamics, with 4-point couplings, arises from a Chern-Simons-like

action for the pure spinor wave function. This calculation is of standard superspace type

and goes schematically as follows. Let φI be the ghost number 0 part of ΦI . The matter

equations of motion then all follow from the equation Dφ|(1)(1010) = 0, where D includes

the ghost number 0 gauge superfield. This is solved by Dφ = Dφ|(1)(0001) = χ. Acting with

another fermionic covariant derivative yields Dχ = D2φ = (∂A+f)φ = ∂Aφ+φ3, where f is

the field strength with two fermionic components, which by the equation of motion for the

gauge superfield is proportional to φ2. Yet another fermionic derivative gives the equation

of motion for χ, schematically reading ∂/Aχ + φ2χ = 0, etc. The formalism also makes it

completely clear why the Chern-Simons gauge field is needed to close the supersymmetry

algebra in the component formulation: the interactions between matter fields arise from

elimination of the dimension-1 superspace component fAα,Bβ of the field strength.
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